A Theory of Utility and Privacy of Data Sources

Lalitha Sankar*, S. Raj Rajagopalan †, H. Vincent Poor*

*Dept. of Electrical Engineering, Princeton University, Princeton, NJ 08544. lalitha.poor@princeton.edu
†HP Labs, Princeton, NJ 08544. raj.raj@hp.com

Abstract—The problem of frequent private information “leakage” from the myriad large centralized searchable data repositories in use today drives the need for an analytical framework that quantifies unequivocally how safe private data can be (privacy) while still providing measurable benefit (utility) to multiple legitimate information consumers. Rate distortion theory is shown to be a natural choice to develop such a framework which includes modeling of data sources, developing application independent utility and privacy metrics, quantifying utility-privacy tradeoffs irrespective of the type of data sources or the methods of providing privacy, and developing a side-information model for dealing with questions of external knowledge.

I. INTRODUCTION

Information technology and electronic communications have been rapidly applied to almost every sphere of human activity, including commerce, medicine and social networking. The concomitant emergence of myriad large centralized searchable data repositories has made “leakage” of private information such as medical data, credit card information, or social security numbers via data correlation (inadvertently or by malicious design) highly probable and thus an important and urgent societal problem. Unlike the well-studied secrecy problem (e.g., [1]–[3]) in which the protocols or primitives make a sharp distinction between secret and non-secret data, in the privacy problem, disclosing data provides informational utility while enabling possible loss of privacy at the same time. In fact, in the course of a legitimate transaction, a user learns some public information, which is allowed and needs to be supported for the transaction to be meaningful, but at the same time he can also learn/infer private information, which needs to be prevented. Thus every user is (potentially) also an adversary. This drives the need for a unified analytical framework that can tell us unequivocally and precisely how safe private data can be (privacy) and simultaneously provide measurable benefit (utility) to multiple legitimate information consumers.

It has been noted that utility and privacy are competing goals: perfect privacy can be achieved by publishing nothing at all, but this has no utility; perfect utility can be obtained by publishing the data exactly as received, but this offers no privacy [4]. Utility of a data source is potentially (but not necessarily) degraded when it is restricted or modified to uphold privacy requirements. The central problem of this paper is a precise quantification of the tradeoff between the privacy needs of the respondents (individuals represented by the data) and the utility of the sanitized (published) data for any data source.

Though the problem of privacy and information leakage has been studied for several decades by multiple research communities (e.g., [4]–[8] and the references therein), the proposed solutions have been both heuristic and application-specific. The recent groundbreaking theory of \(\epsilon \)-differential privacy [9] from the theoretical computer science community provides the first universal metric of privacy that applies to any numerical database. We seek to address the open question of a universal and analytic characterization that provides a tight privacy-utility tradeoff using tools and techniques from information theory.

Rate distortion theory is a natural choice to study the utility-privacy tradeoff; utility can be quantified via fidelity which, in turn, is related to distortion and privacy can be quantified via equivocation. Our key insight is captured in the following theorem which is presented in this paper: for a data source with private and public data, minimizing the information disclosure rate sufficiently to satisfy the desired utility for the public data is equivalent to maximizing the privacy for the private data. In a sparsely referenced paper [10] from three decades ago, Yamamoto developed the tradeoff between rate, distortion, and equivocation for a specific and simple source model. In this paper, we show via the above summarized theorem that Yamamoto’s formalism can be translated into the language of data disclosure. Furthermore, we develop a framework that allows us to model data sources, specifically databases, develop application independent utility and privacy metrics, quantify the fundamental bounds on the utility-privacy tradeoffs, and develop a side-information model for dealing with questions of external knowledge.

II. THE DATABASE PRIVACY PROBLEM

A. Problem Definition

While the problem of quantifying the utility/privacy problem applies to all types of data sources, we start our study with databases because they are highly structured and historically better studied than other types of sources. A database is a table (matrix) whose rows represent individual entries and whose columns represent the attributes of each entry [5]. For example, the attributes of each entry in a healthcare database typically include name, address, social security number (SSN), gender, and a collection of medical information, and each entry contains the information pertaining to an individual. Messages
from a user to a database are called queries and, in general, result in some numeric or non-numeric information from the database termed the response.

The goal of privacy protection is to ensure that, to the extent possible, the user’s knowledge is not increased beyond strict predefined limits by interacting with the database. The goal of utility provision is, generally, to maximize the amount of information that the user can receive. Depending on the relationships between attributes, and the distribution of the actual data, a response may contain information that can be inferred beyond what is explicitly included in the response. The privacy policy defines the information that should not be revealed explicitly or by inference to the user and depends on the context and the application. For example, in a database on health statistics, attributes such as name and SSN may be considered private data, whereas in a state motor vehicles database only the SSN is considered private. The challenge for privacy protection is to design databases such that responses do not reveal information contravening the privacy policy.

B. Current Approaches and Metrics

The approaches considered in the literature have centered on perturbation (also called sanitization) which encompasses a general class of database modification techniques that ensure that a user interacts only with a modified database that is derived from the original (e.g.: [4], [6]–[8]). Most of the current perturbation-based approaches, with the exception of differential privacy-based ones, are heuristic and application-specific and often focus on additive noise approaches.

In order to quantify the privacy and utility afforded by a data source, metrics are critical. The concept of k-anonymity proposed by Sweeney [7] captures the intuitive notion of privacy that every individual entry should be indistinguishable from (k − 1) other entries for some large value of k. More recently, researchers in the data mining community have proposed to quantify the privacy loss resulting from data disclosure as the mutual information between attribute values in the original and perturbed data sets, both modeled as random variables [8]. Finally, motivated by cryptographic models, the concept of differential privacy from theoretical computer science [9] has created a universal model for privacy which measures the risk of loss of privacy to an individual whose data is in a statistical database. However, this work as well the others described above do not propose a companion universal utility metric that can be guaranteed along with privacy.

III. AN INFORMATION-THEORETIC APPROACH

A. Model for Databases

Circumventing the semantic issue: In general, utility and privacy metrics tend to be application specific. Focusing our efforts on developing an analytical model, we propose to capture a canonical database model and representative abstract metrics. Such a model will circumvent the classic privacy issues related to the semantics of the data by assuming that there exist forward and reverse maps of the data set to the proposed abstract format (for e.g., a string of bits or a sequence of real values). Such mappings are often implicitly assumed in the privacy literature [4], [8], [9]; our motivation for making it explicit is to separate the semantic issues from the abstraction and apply Shannon-theoretic techniques.

Model: Our proposed model focuses on large databases with \(K \) attributes per entry. Let \(X_k \in X_k \) be a random variable denoting the \(k^{th} \) attribute, \(k = 1, 2, \ldots, K \), and let \(X = (X_1, X_2, \ldots, X_K) \). A database \(d \) with \(n \) rows is a sequence of \(n \) independent observations of \(X \) from the distribution

\[
p_X(x) = p_{X_1, X_2, \ldots, X_K}(x_1, x_2, \ldots, x_K)
\]

which is assumed to be known to both the designers and users of the database. Our simplifying assumption of row independence holds generally (but not always) as correlation is typically across attributes and not across entries. We write \(X^n = (X^n_1, X^n_2, \ldots, X^n_K) \) to denote the \(n \) independent observations of \(X \). This database model is universal in the sense that most practical databases can be mapped to this model.

A joint distribution in (1) models the fact that the attributes in general are correlated and can reveal information about one another. In addition to the revealed information, a user of a database can have access to correlated side information from other information sources. We model the side-information as an \(n \)-length sequence \(Z^n \) which is correlated with the database entries via a joint distribution \(p_{XZ}(x,z) \).

Public and private variables: We consider a general model in which some attributes need to be kept private while the source can reveal a function of some or all of the attributes. We write \(K_r \) and \(K_h \) to denote sets of private (subscript \(h \) for hidden) and public (subscript \(r \) for revealed) attributes, respectively, such that \(K_r \cup K_h = K \equiv \{1, 2, \ldots, K\} \). We further denote the corresponding collections of public and private attributes by \(X_r \equiv \{X_k\}_{k \in K_r} \) and \(X_h \equiv \{X_k\}_{k \in K_h} \), respectively. Our notation allows for an attribute to be both public and private; this is to account for the fact that a database may need to reveal a function of an attribute while keeping the attribute itself private. In general, a database can choose to keep public (or private) one or more attributes (\(K > 1 \)). Irrespective of the number of private attributes, a non-zero utility results only when the database reveals an appropriate function of some or all of its attributes.

Special cases: For \(K = 1 \), the lone attribute of each entry (row) is both public and private, and thus, we have \(X \equiv X_r \equiv X_h \). Such a model is appropriate for data mining [8] and census [4], [6] data sets in which utility generally is achieved by revealing a function of every entry of the database while simultaneously ensuring that no entry is perfectly revealed. For \(K = 2 \) and \(K_h \cup K_r = K \) and \(K_h \cap K_r = \emptyset \), we obtain the Yamamoto model in [10].

B. Metrics: The Privacy and Utility Principle

Even though utility and privacy measures tend to be specific to the application, there is a fundamental principle that unifies all these measures in the abstract domain. The aim of a privacy-preserving database is to provide some measure of
utility to the user while at the same time guaranteeing a measure of privacy for the entries in the database.

A user perceives the utility of a perturbed database to be high as long as the response is similar to the response of the unperturbed database; thus, the utility is highest of an unperturbed database and goes to zero when the perturbed database is completely unrelated to the original database. Accordingly, our utility metric is an appropriately chosen average ‘distance’ function between the original and the perturbed databases. Privacy, on the other hand, is maximized when the perturbed response is completely independent of the data. Our privacy metric measures the difficulty of extracting any private information from the response, i.e., the amount of uncertainty or equivocation about the private attributes given the response.

C. Utility-Privacy Tradeoffs

1) A Privacy-Utility Tradeoff Model: We now propose a privacy-utility model for databases. Our primary contribution is demonstrating the equivalence between the database privacy problem and a source coding problem with additional privacy constraints. A primary motivation for our approach is the observation that database sanitization is traditionally the process of distorting the data to achieve some measure of privacy. For our abstract universal database model, sanitization is thus a problem of mapping a set of database entries to a different set subject to specific utility and privacy requirements.

Our notation below relies on this abstraction. Recall that a database d with n rows is an instantiation of X^n. Thus, we will henceforth refer to a real database d as an input sequence and to the corresponding sanitized database (SDB) d' as an output sequence. When the user has access to side information, the reconstructed sequence at the user will in general be different from the SDB sequence.

Our coding scheme consists of an encoder F_E which is a mapping from the set of all input sequences (i.e., all databases d chosen from an underlying distribution) to a set of indices $W = \{1, 2, \ldots, M\}$ and an associated table of output sequences (each of which is a d') with a one-to-one mapping to the set of indices given by

\[
F_E : (X_1^n \times X_2^n \times \ldots \times X_K^n)_{k \in K_{enc}} \rightarrow W = \{SDB_k\}_{k=1}^M \tag{2}
\]

where $K_r \subseteq K_{enc} \subseteq K$ and $M = 2^{nR}$ is the number of output (sanitized) sequences created from the set of all input sequences. The encoding rate R is the number of bits per row (without loss of generality, we assume n rows in d and d') of the sanitized database. The encoding F_E in (2) includes both public and private attributes in order to model the general case in which the sanitization depends on a subset of all attributes.

A user with a view of the SDB (i.e., an index $w \in W$ for every d) and with access to side information Z^n, whose entries $Z_i, i = 1, 2, \ldots, n$, take values in the alphabet Z, reconstructs the database d' via the mapping

\[
F_D : W \times Z^n \rightarrow \{\hat{X}_{r,m}^n\}_{m=1}^M \in \left(\prod_{k \in K_r} X_k^n\right) \tag{3}
\]

where $\hat{X}_r^n = F_D (F_E (X^n))$.

A database may need to satisfy multiple utility constraints for different (disjoint) subsets of attributes, and thus, we consider a general framework with $L \geq 1$ utility functions that need to be satisfied. Relying on the distance based utility principle, we model the l^{th} utility, $l = 1, 2, \ldots, L$, via the requirement that the average distortion Δ_l of a function f_l of the revealed variables is upper bounded, for some $\epsilon > 0$, as

\[
u_l : \Delta_l \equiv E \left[\frac{1}{n} \sum_{i=1}^n g \left(f_l (X_{r,i}), \hat{f}_l (\hat{X}_{r,i}) \right) \right] \leq D_l + \epsilon, \quad l = 1, 2, \ldots, L, \tag{4}
\]

where $g(\cdot, \cdot)$ denotes a distortion function, E is the expectation over the joint distribution of (X_r, \hat{X}_r), and the subscript i in $X_{r,i}$ and $X_{r,i}$ denotes the i^{th} entry of X_r^n and \hat{X}_r^n, respectively. Examples of distance-based distortion functions include the Euclidean distance for Gaussian distributed database entries, the Hamming distance for binary input and output sequences, and the Kullback-Leibler (K-L) ‘distance’ comparing the input and output distributions.

Having argued that a quantifiable uncertainty captures the underlying privacy principle of a database, we model the uncertainty or equivocation about the private variables using the entropy function as

\[
p : \Delta_p \equiv \frac{1}{n} H (X_k^n | W, Z^n) \geq E - \epsilon, \tag{5}
\]

i.e., we require the average number of uncertain bits per entry to be lower bounded by E. The case in which side information is not available at the user is obtained by simply setting $Z^n = 0$ in (3) and (5). While our general problem allows separate constraints on the privacy and utility, we show later that for specific canonical databases (census and data mining) a constraint on only one of them (utility or privacy) suffices (see Corollary 6 in Section III-C.3).

The utility and privacy metrics in (4) and (5), respectively, capture two aspects of our universal model: a) both represent averages by computing the metrics across all database instantiations d, and b) the metrics bound the average distortion and privacy per entry. Thus, as the likelihood of the non-typical sequences decreases exponentially with increasing n (very large databases), these guarantees apply nearly uniformly to all (typical) entries. Our general model also encompasses the fact that the exact mapping from the distortion and equivocation domains to the utility and privacy domains, respectively, can depend on the application domain. We write $D \equiv (D_1, D_2, \ldots, D_L)$ and $\Delta \equiv (\Delta_1, \Delta_2, \ldots, \Delta_L)$. Based on our notation thus far, we define the utility-privacy tradeoff region as follows.

Definition 1: The utility-privacy tradeoff region T is the set of all feasible utility-privacy tuples (D, E) for which there exists a coding scheme (F_E, F_D) given by (2) and (3), respectively, with parameters (n, M, Δ, Δ_p) satisfying the constraints in (4) and (5).

2) Equivalence of Utility-Privacy and Rate-Distortion-Equivocation: We now present an argument for the equivalence of the above utility-privacy tradeoff analysis with a rate-
distortion-equivocation analysis of the same source. For the database source model described here, a classic lossy source coding problem is defined as follows.

Definition 2: The set of tuples \((R, D)\) is said to be feasible (achievable) if there exists a coding scheme given by (2) and (3) with parameters \((n, M, \Delta)\) satisfying the constraints in (4) and a rate constraint

\[
M \leq 2^{n(R+\epsilon)}.
\]

When an additional privacy constraint in (5) is included, the source coding problem becomes one of determining the achievable rate-distortion-equivocation region defined as follows.

Definition 3: The rate-distortion-equivocation region \(\mathcal{R}\) is the set of all tuples \((R, D, E)\) for which there exists a coding scheme given by (2) and (3) with parameters \((n, M, \Delta, \Delta_p)\) satisfying the constraints in (4), (5), and (6). The set of all feasible distortion-equivocation tuples \((D, E)\) is denoted by \(\mathcal{R}_{D-E}\), the equivocation-distortion function in the \(D-E\) plane is denoted by \(\Gamma(D)\), and the distortion-equivocation function which quantifies the rate as a function of both \(D\) and \(E\) is denoted by \(\mathcal{R}(D, E)\).

Thus, a rate-distortion-equivocation code is by definition a (lossy) source code satisfying a set of distortion constraints that achieves a specific privacy level for every choice of the distortion tuple. In the following theorem, we present a basic result capturing the precise relationship between \(T\) and \(\mathcal{R}\). To the best of our knowledge, this is the first analytical result that quantifies a tight relationship between utility and privacy. We briefly sketch the proof here; details can be found in [11].

Theorem 4: For a database with a set of utility and privacy metrics, the tightest utility-privacy tradeoff region \(T\) is the distortion-equivocation region \(\mathcal{R}_{D-E}\).

Proof: The crux of our argument is the fact that for any feasible utility level \(D\), choosing the minimum rate \(R(D)\), ensures that the least amount of information is revealed about the source via the reconstructed variables. This in turn ensures that the maximum privacy of the private attributes is achieved for that utility since, in general, the public and private variables are correlated. For the same set of utility constraints, since such a rate requirement is not a part of the utility-privacy model, the resulting privacy achieved is at most as large as that in \(\mathcal{R}_{D-E}\) (see Fig. 1(a)).

Implicit in the above argument is the fact that a utility-privacy achieving code does not perform any better than a rate-distortion-equivocation code in terms of achieving a lower rate (given by \(\log_2 M/n\)) for the same distortion and privacy constraints. We can show this by arguing that if such a code exists then we can always find an equivalent source coding problem for which the code would violate Shannon’s source coding theorem [12]. An immediate consequence of this is that a distortion-constrained source code suffices to preserve a desired level of privacy; in other words, the utility constraints require revealing data which in turn comes at a certain privacy cost that must be borne and vice-versa. We capture this observation in Fig. 1(b) where we contrast existing privacy-exclusive and utility-exclusive regimes (extreme points of the utility-privacy tradeoff curve) with our more general approach of determining the set of feasible utility-privacy tradeoff points.

From an information-theoretic perspective, the power of Theorem 4 is that it allows us to study the tighter problem of database utility-privacy tradeoffs in terms of a relatively familiar problem of source coding with privacy constraints. As noted previously, this problem has been studied for a specific model by Yamamoto and here we expand his elegant analysis to arbitrary database models including those with side information at the user. Rate for the database can be interpreted as the number of revealed information bits (precision) per row. Our result shows the tight relationship between utility, privacy, and precision – fixing values for any two determines the third.

3) Capturing the Effects of Side-Information: It has been illustrated that when a user has access to an external data source (which is not part of the database under consideration) the level of privacy that can be guaranteed changes [7], [9]. We cast this problem in information-theoretic terms as a side information problem.

In an extended version [11] of this work, we develop the tightest utility-privacy tradeoff region for the three cases of a) no side information \((E = 1\) case studied in [10]), b) side information only at the user, and c) side information at both the source (database) and the user. We present a result for the case with side information at the user only and for simplicity, we assume a single utility function, i.e., \(L = 1\). The proof uses an auxiliary random variable \(U\) along the lines of source coding with side information [13] and bounds the equivocation just as in [10, Appendix 1]. The following theorem defines the bounds on the region \(\mathcal{R}\) in Definition 3 via the functions \(\Gamma(D)\) and \(R(D, E)\) where \(\Gamma(D)\) bounds the maximal achievable privacy and \(R(D, E)\) is the minimal information rate (see Fig. 1(a)) for very large databases \((n \rightarrow \infty)\). The proof is omitted due to space and can be found in [11].

Theorem 5: For a database with side information available only at the user, the functions \(\Gamma(D)\) and \(R(D, E)\) and the regions \(\mathcal{R}_{D-E}\) and \(\mathcal{R}\) are given by

\[
\Gamma (D) = \sup_{p(x_r, x_h) | p(u|x_r, x_h) \in \mathcal{P}(D)} H(X_h | U Z) \tag{7}
\]

\[
R(D, E) = \inf_{p(x_r, x_h) | p(u|x_r, x_h) \in \mathcal{P}(D, E)} I(X_h X_r; U) - I(Z; U) \tag{8}
\]

\[
\mathcal{R}_{D-E} = \{(D, E) : D \geq 0, 0 \leq E \leq \Gamma (D), R \geq R(D, E)\} \tag{9}
\]

\[
\mathcal{R} = \{(R, D, E) : D \geq 0, 0 \leq E \leq \Gamma (D), R \geq R(D, E)\} \tag{10}
\]

where \(\mathcal{P}(D, E)\) is the set of all \(p(x_r, x_h, z)p(u|x_r, x_h)\) such that \(E[d(X_r, g(U, Z))] \leq D\) and \(H(X_h | U Z) \geq E\), while \(\mathcal{P}(D)\) is defined as

\[
\mathcal{P}(D) = \bigcup_{H(X_h | X_r) \leq E \leq H(X_h | Z)} \mathcal{P}(D, E). \tag{11}
\]

While Theorem 5 applies to a variety of database models, it is extremely useful in quantifying the utility-privacy tradeoff for the following special cases of interest.
i) The single database problem (i.e., no side information): SDB is revealed. Here, we have $Z = 0$ and $U = \hat{X}_r$, i.e., the reconstructed vectors seen by the user are the same as the SDB vectors.

ii) Completely hidden private variables: Privacy is completely a function of the statistical relationship between public, private, and side information data. The expression for $R(D, E)$ in (8) assumes the most general model of encoding both the private and the public variables. When the private variables can only be deduced from the revealed variables, i.e., $X_h - X_r - U$ is a Markov chain, the expression for $R(D, E)$ in (8) will simplify to the Wyner-Ziv source coding formulation [13], thus clearly demonstrating that the privacy of the hidden variables is a function of both the correlation between the hidden and revealed variables and the distortion constraint.

iii) Census and data mining problems without side information: Information rate completely determines the degree of privacy achievable. For $Z = 0$, setting $X_r = X_h = X$ (such that $U = \hat{X}$), we obtain the census/data mining problem discussed earlier. With this substitution, from Theorem 5, we have the maximal achievable equivocation $\Gamma(D) = H(X) - R(D)$, where now $R(D) \equiv R(D, E)$. Our analysis formalizes the intuition in [8] for using the mutual information as an estimate of the privacy lost. However in contrast to [8] in which the underlying perturbation model is an additive noise model, we assume a perturbation model most appropriate for the input statistics, i.e., the stochastic relationship between the output and input variables is chosen to minimize the rate of information transfer. This fundamental result is captured in the following corollary.

Corollary 6: For the special case of $K = 1$, i.e., $X_r = X_h = X$, the utility-privacy problem is completely defined by a utility constraint since the maximal achievable equivocation is directly obtainable from the minimal information transfer rate.

IV. CONCLUDING REMARKS

We have presented an abstract model for databases with an arbitrary number of public and private variables, developed application-independent privacy and utility metrics, and used rate distortion theory to determine the fundamental utility-privacy tradeoff limits. Future work includes eliminating the row independence assumption, modeling and studying tradeoffs for multiple query databases, and relating current approaches in computer science and our universal approach.

REFERENCES